

chap 1: Introduction à la Programmation
Orientée Objets (POO)
1. La programmation orientée objets

• La POO est un paradigme de programmation qui
organise le code autour de classes et objets au lieu de
simples fonctions et instructions.

• Une classe est comme un plan ou un modèle (par
exemple : la classe Voiture).

• Un objet est une instance concrète de la classe (par
exemple : ma_voiture).

Exemple en Python :
class Voiture:
 """
 Classe représentant une voiture avec une marque et un modèle.
 """
 def __init__(self, marque, modele):
 """
 Constructeur de la classe Voiture.
 Paramètres :
 - marque (str) : la marque de la voiture (ex : "Toyota")
 - modele (str) : le modèle de la voiture (ex : "Corolla")
 """
 # Initialisation des attributs de la voiture
 self.marque = marque
 self.modele = modele

 def afficher(self):
 """
 Affiche les informations de la voiture (marque et
modèle).
 """
 print(f"Voiture : {self.marque} {self.modele}")

Création d'une instance (un objet) de la classe
Voiture
ma_voiture = Voiture("Toyota", "Corolla")
Appel de la méthode afficher() pour afficher les
informations de l'objet
ma_voiture.afficher()
2.Les avantages de la POO
 Encapsulation

• Cacher les détails internes d’un objet et fournir une interface simple pour l’utiliser.
• Exemple : une voiture a un moteur, mais pour la conduire, on utilise seulement le volant

et les pédales.

class CompteBancaire:
 def __init__(self, solde=0):
 self.__solde = solde # attribut privé
 def deposer(self, montant):
 self.__solde += montant
 def consulter_solde(self):
 return self.__solde

Abstraction

• Ne montrer que les fonctionnalités essentielles sans
exposer la complexité.

• Exemple : une voiture a une fonction démarrer(), mais
l’utilisateur n’a pas besoin de savoir comment le moteur
fonctionne.

• 3 Differnec entre programmation Classique et POO

1. Programmation classique (procédurale)

• Principe : on écrit des séquences d’instructions qui
s’exécutent les unes après les autres.

• Le programme est divisé en fonctions (ou procédures) qui
effectuent des tâches précises.

• Les données (variables) et les fonctions (logique) sont
séparées.

• Exemple concret :

•
o Tu as une variable rayon,
o et une fonction calculer_aire(rayon) qui

utilise cette donnée pour donner un résultat.

���� C’est une logique de “faire étape par étape”(séquentielle).

� 2. Programmation orientée objet (POO)

• Principe : on organise le programme autour de classes et
objets.

• Une classe est un modèle (comme un plan d’architecte).
• Un objet est une instance de cette classe (comme une

maison construite à partir du plan).
• • Les données (appelées attributs) et les fonctions

(appelées méthodes) sont regroupées ensemble dans une
même classe.

• • Exemple concret :

class Cercle:
 def __init__(self, rayon):

 self.rayon = rayon
 def aire(self):
 return 3.14 * self.rayon ** 2
c = Cercle(5)
print(c.aire()) # Résultat : 78.5

• Ici, le cercle a à la fois :
o une donnée : son rayon,
o un comportement : la méthode pour calculer l’aire.

���� C’est une logique de “regrouper données + actions” dans un même concept.

en résumé

Aspect Programmation classique Programmation
orientée objet

Organisation Fonctions + données séparées
Classes regroupant
données et
méthodes

Approche Procédurale (étape par étape) Orientée objets
(modéliser le réel)

Réutilisation Moins flexible
Plus réutilisable
grâce à l’héritage et
au polymorphisme

Exemple Fonctions
calculer_aire(rayon)

Objet
Cercle.aire()

En clair :

• Procédurale = tu écris des recettes de cuisine.
• POO = tu définis des “chefs” (objets) qui savent cuisiner

eux-mêmes leurs plats.

Initiation au langage Python
• Python est un langage simple, lisible et très utilisé.
• Syntaxe basique :

Variables
nom = "Nourame"
age = 25
Condition
if age > 18:
 print(f"{nom} est majeur")
Boucle

for i in range(3):
 print("Bonjour")

Les librairies Python

• Une librairie est un ensemble de fonctions prêtes à
l’emploi.

• Exemples :
o math : pour les calculs mathématiques
o datetime : pour gérer les dates et heures
o numpy, pandas : pour les données

scientifiques
o matplotlib : pour tracer des graphiques

���� Exemple :

import math

print(math.sqrt(16)) # permet de clculer la racine carrée

	chap 1: Introduction à la Programmation Orientée Objets (POO)
	1. La programmation orientée objets
	class Voiture:
	"""
	Classe représentant une voiture avec une marque et un modèle.
	"""
	def __init__(self, marque, modele):
	"""
	Constructeur de la classe Voiture.
	Paramètres :
	- marque (str) : la marque de la voiture (ex : "Toyota")
	- modele (str) : le modèle de la voiture (ex : "Corolla")
	"""
	# Initialisation des attributs de la voiture
	self.marque = marque
	self.modele = modele
	def afficher(self):
	"""
	Affiche les informations de la voiture (marque et modèle).
	"""
	print(f"Voiture : {self.marque} {self.modele}")
	# Création d'une instance (un objet) de la classe Voiture
	ma_voiture = Voiture("Toyota", "Corolla")
	# Appel de la méthode afficher() pour afficher les informations de l'objet
	ma_voiture.afficher()
	2.Les avantages de la POO
	Encapsulation
	Abstraction

	 3 Differnec entre programmation Classique et POO
	1. Programmation classique (procédurale)
	🔹 2. Programmation orientée objet (POO)

	class Cercle:
	def __init__(self, rayon):
	self.rayon = rayon
	def aire(self):
	return 3.14 * self.rayon ** 2
	c = Cercle(5)
	print(c.aire()) # Résultat : 78.5
	en résumé

	Initiation au langage Python
	Les librairies Python

